Prestack Kirchhoff time migration for complex media
نویسنده
چکیده
Constructing the seismic image in vertical time, as opposed to depth, eliminates the inherent ambiguity of resolving the vertical P -wave velocity from surface seismic data in transversely isotropic media with a vertical axis of symmetry (VTI media). By ray tracing in the space-time (x-τ)-domain, a traveltime map is built by interpolating the traveltime information along the rays onto a regular grid in space and time. This traveltime map is used by the prestack Kirchhoff time migration to obtain the migration summation trajectories. Since the traveltime map is extracted using ray tracing, the migration can practically handle any lateral velocity variations. Specifically, the prestack time migration yields good images of the isotropic and anisotropic Marmousi models.
منابع مشابه
3-D wave-equation imaging of a North Sea dataset: common-azimuth migration + residual migration
3-D prestack common-azimuth depth migration (CAM) has strong potential for accurately imaging complex media and correctly handling multi-pathing. Here, we apply the technique to a North Sea dataset recorded over a salt dome region. The results obtained demonstrate the suitability of the method for complex media, and illustrate important differences with Kirchhoff methods. A detailed analysis of...
متن کامل3-d Prestack Wave-equation Imaging: a Rapidly Evolving Technology Biondo Biondi*, Robert G. Clapp, Paul Sava and Marie Prucha
Wave-equation migration is an accurate and robust alternative to Kirchhoff migration when multipathing and other complex wave phenomena occur, such as in subsalt exploration. In these situations, images obtained by wave-equation migration are often superior to images obtained by Kirchhoff methods. However, 3-D wave-equation prestack imaging is an immature technology compared with Kirchhoff imag...
متن کامل3-D migration velocity analysis with kinematic Kirchhoff migration
Migration velocity analysis includes both depth-focusing analysis and residual curvature analysis of coherency panels. In either method, it is widely used for 2-D velocity analysis in regions of complex geological structures. Unfortunately, since complex structures tend to be 3-D structures, 3-D prestack depth migration is desirable. The most commonly proposed candidate is kinematic Kirchhoff m...
متن کاملShort Note Common-azimuth migration and Kirchhoff migration for 3-D prestack imaging: A comparison on North Sea data
Common-azimuth migration (CAM) is a 3-D prestack depth migration technique based on the wave equation (Biondi and Palacharla, 1996). It exploits the intrinsic narrow-azimuth nature of marine data to reduce its dimensionality and thus manages to cut the computational cost of 3-D imaging significantly enough to compete with Kirchhoff methods. Based on a recursive extrapolation of the recorded wav...
متن کاملNIOC’s requirements for data processing and interpretation in challenging geological environment
The time for easy oil discovery and production for National Iranian Oil Company (NIOC) is over. This means that the oil is no longer discovered in structurally simple, i.e., almost flat environments like south of Khuzestan province (south west of Iran). This comes along with the fact that Iran’s biggest oil reservoirs are in this area, and they are passing half of their life cycle. These giant ...
متن کامل